My “Dream Research” Project

If I was asked to identify the most challenging biological question, I would answer immediately. What is the nature of memory and thought? This question always fascinated me as a child. For a long time, I thought only biologists can figure that out. It took me 10 years deeply studying physics and chemistry, becoming a specialist in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI), to realize that actually now we are close to start answering the question which captivated my childish mind.


Metabolic Metro Map. The image is taken from Wikipedia.


With all its complexity, the end result of the genetic machinery is to affect the chemistry of the body. Small molecules, metabolites, serve as fingerprints of what is happening inside us. Studying metabolites is almost like looking at someone’s apartment and coming up with a story of their recent lives: we can make guesses about a lifestyle based on what we see! And the chemistry of thinking is not an exception – our thought processes are accompanied by myriads of chemical transformations, and leftover metabolites can tell us about the process behind them.

Studying metabolites is almost like looking at someone’s apartment and coming up with a story of their recent lives: we can make guesses about a lifestyle based on what we see!

Routinely, metabolites are measured through analytical techniques like NMR and mass spectrometry (MS). But a new astonishing era is emerging. With new sensitivity enhancement techniques (signals can be increased by more than 20,000 times [1-4]), MR imaging will become a new tool to study metabolism in vivo and will move beyond morphology onto a platform to visualize molecules. Being fundamentally a quantum mechanical technique, the full potential of MRI is yet to be discovered.

I see my “dream research” project as the development of a new experimental MRI-NMR/MS platform to study metabolomics of memory and thought in living creatures. By developing novel MRI pulse sequences (which will take into account quantum-mechanical nature of molecules) and by applying state-of-the-art signal enhancement techniques, we will be able to “light up” the regions of the brain to study chemistry in them with an unprecedented level of accuracy. I believe that once all new methodologies available today are combined, it will become possible to create functional MRI for metabolomics – a tool to study instant chemical changes in the brain associated with memory and thinking. This will not only revisit the known biochemical processes at a new quantitative level, it will allow unraveling unexpected secrets of metabolism. And it is not only a fun thing to do — understanding the biochemical reasons for making decisions will bring us much closer to a society in which everyone truly enjoys living.


[1] J. H. Ardenkjær-Larsen et al. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc. Nat. Acad. Sci., 2003, 100 (18), 10158-10163.

[2] R. W. Adams et al. Reversible Interactions with parahydrogen Enhance NMR Sensitivity by Polarization Transfer. Science, 2009, 323 (5922), 1708-1711.

[3] D. A. Barskiy et al. Over 20% 15N Hyperpolarization in Under One Minute for Metronidazole, an Antibiotic and Hypoxia Probe. J. Am. Chem. Soc., 2016, 138 (26), 8080–8083.

[4] D. A. Barskiy et al. NMR Hyperpolarization Techniques of Gases. Chem. Eur. J., 2017, 23 (4), 725-751.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s